Invariant differential equations on homogeneous manifolds
نویسندگان
چکیده
منابع مشابه
Invariant Differential Equations on Homogeneous Manifolds by Sigurdur Helgason
1. Historical origins of Lie group theory. Nowadays when Lie groups enter in a profound way into so many areas of mathematics, their historical origin is of considerable general interest. The connection between Lie groups and differential equations is not very pronounced in the modern theory of Lie groups, so in this introduction we attempt to describe some of the foundational work of S. Lie, W...
متن کاملDynamics of Differential Equations on Invariant Manifolds
The simplification resulting from reduction of dimension involved in the study of invariant manifolds of differential equations is often difficult to achieve in practice. Appropriate coordinate systems are difficult to find or are essentially local in nature thus complicating analysis of global dynamics. This paper develops an approach which avoids the selection of coordinate systems on the man...
متن کاملInvariant Manifolds for Stochastic Partial Differential Equations
Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...
متن کاملInvariant manifolds for random and stochastic partial differential equations
Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. Under a nonuniform hyperbolicity or a nonuniform exponential dichotomy condition, the existence of random pseudostable and pseudo-unstable manifolds for a class of random partial differential equations and stochastic partial differential equations is shown. Unlike the invarian...
متن کاملStochastic Differential Equations on Manifolds
In [1] and [2], we studied the problem of the existence and uniqueness of a solution to some general BSDE on manifolds. In these two articles, we assumed some Lipschitz conditions on the drift f(b, x, z). The purpose of this article is to extend the existence and uniqueness results under weaker assumptions, in particular a monotonicity condition in the variable x. This extends well-known result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1977
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1977-14317-6